
Riley Breske
CSC-161

Political Party Classification Using
Random Forest
Project Overview:

In this project, I aimed to build a classification model to predict the political party affiliation of
individuals based on a dataset consisting of 30 observations across 9 features. The goal was to
create an accurate model by selecting the most relevant features and then applying a Random
Forest classifier to achieve the best performance.

Feature Reduction:

Initially, I explored the relationships between the various features and reduced the number of
features to enhance the model's accuracy. Through backward stepwise regression, four
features—income, residence, job satisfaction (jobhappy), and gender—were removed due to
their low predictive power. The final model was built using five features: ID, number of children,
age, TV hours, and radio hours.

Random Forest Model:

Using the Random Forest algorithm, the model was able to achieve a very high level of
accuracy with a minimal error rate of just 0.2%. The confusion matrix below illustrates the
model's performance, showing nearly perfect classification with no misclassifications in most
categories.

Confusion Matrix:

Democrat Independent Other Republican class.error

Democrat 45 0 1 0 0.02173913

Independent 0 23 0 0 0.00000000

Other 0 0 36 0 0.00000000

Republican 0 0 0 45 0.00000000

When tested on the validation dataset, the model continued to perform perfectly, as
demonstrated by the AUC values for each curve, all of which were 1. This indicates flawless
performance of the model.

Conclusion:

The Random Forest model proved to be highly effective in predicting political party affiliation
with exceptional accuracy. The feature selection process played a crucial role in this, ensuring
that only the most relevant features were used, thereby preventing overfitting and improving the
model's performance.

Library Installation

install.packages("boot", dep=TRUE)

library(boot)

install.packages('psych')

library(psych)

install.packages('ROCR')

library(ROCR)

install.packages('randomForest')

library(randomForest)

EDA

Read in the data

MyData = read.csv("smallsurveyQ1.csv")

summary(MyData)

describe(MyData)

Feature Reduction with Backward Stepwise Regression

MyData$politicalparty = as.factor(MyData$politicalparty)

MyData$gender = as.factor(MyData$gender)

MyData$residence = as.factor(MyData$residence)

NumericMyData = MyData

NumericMyData$politicalparty = as.numeric(MyData$politicalparty)

NumericMyData$gender = as.numeric(MyData$gender)

NumericMyData$residence = as.numeric(MyData$residence)

Initial Model

NumericMyData.lm = lm(politicalparty ~ id + gender + residence +

numbchildren + age + income + jobhappy + tvhours + radiohours, data =

NumericMyData)

summary(NumericMyData.lm)

Stepwise Feature Removal

NumericMyData.lm = lm(politicalparty ~ id + numbchildren + age + tvhours +

radiohours, data = NumericMyData)

summary(NumericMyData.lm)

####### Random Forest Model ###############

Subset data for Random Forest

RandomForestData <- data.frame(politicalparty = MyData$politicalparty, id =

MyData$id, numbchildren = MyData$numbchildren, age = MyData$age, tvhours =

MyData$tvhours, radiohours = MyData$radiohours)

Split data into build and validate samples

TotalSamples = sample(1:30, 300, replace = T)

ValidateSample = TotalSamples[1:150]

BuildSample = TotalSamples[151:300]

Build = RandomForestData[BuildSample,]

Validate = RandomForestData[ValidateSample,]

Train Random Forest Model

MyModel = randomForest(politicalparty ~ ., data=Build, ntree=500, mtry=2,

importance=TRUE)

MyModel

varImpPlot(MyModel)

Test with holdout data

MyPredictions = predict(MyModel, Validate[,-1])

table(observed=Validate[,1], predicted=MyPredictions)

ROC Curve and AUC

install.packages("ROCR")

library(ROCR)

ROC_Predictions= predict(MyModel, Validate[,-1], type="prob")

Types = c("Green","Yellow","Red","Blue")

polparty = levels(Validate$politicalparty)

for (i in 1:4) {

true_values = ifelse(Validate[,1] == polparty[i], 1, 0)

pred = prediction(ROC_Predictions[,i], true_values)

perf = performance(pred, "tpr", "fpr")

if (i == 1) {

plot(perf, col=Types[i], main="ROC for Political Party")

} else {

plot(perf, main="ROC", col=Types[i], add=TRUE)

}

AUC = performance(pred, measure = "auc")

print(AUC@y.values)

}

